## I am reading "The Philosopher's Toolkit" by Baggily and Fosl, and in section 1

### I don't have Baggily and Fosl

I don't have Baggily and Fosl's book handy but if your quote is accurate, there's clearly a mistake—almost certainly a typo or proof-reading error. The tautology that goes with a valid argument is the hypothetical whose antecedent is the conjunction of the premises *and whose consequent* is the conclusion. Thus, if

P, Q therefore R

is valid, then

(P & Q) → R

is a tautology, or better, a truth of logic. So if the text reads as you say, good catch! You found an error.

However, your question suggests that you're puzzled about how a valid argument could be stated as a tautology at all. So think about our example. Since we've assumed that the argument is valid, we've assumed that there's no row where the premises 'P' and 'Q' are true and the conclusion 'R' false. That means: in every row, either 'P & Q' is false or 'R' is true. (We've ruled out rows where 'P & Q' true and 'R' is false.) So the conditional '(P & Q) → R' is true in every row, and hence is a truth of logic.

- Log in to post comments

- Read more about I am reading "The Philosopher's Toolkit" by Baggily and Fosl, and in section 1
- 1 comment
- Log in to post comments

### I don't have Baggily and Fosl

- Log in to post comments